Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

Potassium barium bismuth oxide

Gaelle Derrien et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Potassium barium bismuth oxide

Gaelle Derrien, Monique Tillard,* Laure Monconduit and Claude Belin

Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques, UMR 5072 CC15, Université des Sciences et Techniques du Languedoc, 2 Place Eugène Bataillon, 34095 Montpellier CEDEX 5, France
Correspondence e-mail: mtillard@univ-montp2.fr

Received 17 April 2000
Accepted 5 May 2000

Data validation number: IUC0000138

$\mathrm{KBa}_{4} \mathrm{Bi}_{3} \mathrm{O}$ crystallizes in the centrosymmetric tetragonal space group $I 4 / \mathrm{mcm}$. In this compound, bismuth is present as two anionic species, i.e. $\mathrm{Bi}_{2}{ }^{4-}$ dumbbells $[\mathrm{Bi}-\mathrm{Bi}$ $3.113(3) \AA$ § and isolated Bi^{3-}. Atom $\mathrm{Bi1}\left(\mathrm{Bi}^{3-}\right)$ lies inside a bicapped square antiprism $(2 \times \mathrm{K}$ and $8 \times \mathrm{Ba})$. Atom Bi 2 , which forms the $\mathrm{Bi}_{2}{ }^{4-}$ dumbbell, sits inside a bicapped distorted trigonal prism $(2 \times \mathrm{K}$ and $6 \times \mathrm{Ba})$. O atoms occupy tetrahedral voids between Ba atoms.

Comment

$\mathrm{KBa}_{4} \mathrm{Bi}_{3} \mathrm{O}$ has been determined in the centrosymmetric space group I4/mcm (No. 140) and can be described as a packing of two types of Bi -centered Ba / K polyhedra. It is isostructural with $\mathrm{KBa}_{4} \mathrm{Sb}_{3} \mathrm{O}$ (Eisenmann et al., 1999). The bicapped square antiprism $\mathrm{Ba}_{8} \mathrm{~K}_{2}$ is centered by Bi1. The bicapped trigonal prism $\mathrm{Ba}_{6} \mathrm{~K}_{2}$ centered by Bi2 forms twinned units by sharing a rectangular face. Tetrahedral voids between these coordination polyhedra are centered by O atoms. In the $\mathrm{Bi}_{2}{ }^{4-}$ dumbbell, the $\mathrm{Bi}-\mathrm{Bi}$ length is 3.113 (3) \AA, similar to that of single $\mathrm{Bi}-\mathrm{Bi}$ lengths in other compounds. In $\mathrm{Ca}_{11} \mathrm{Bi}_{10}$ (Deller \& Eisenmann, 1976) and $\mathrm{Ba}_{11} \mathrm{Bi}_{10}$ (Derrien et al., 2000), the structure is composed of Bi_{2} dumbbells (3.15 and $3.16 \AA$), four-membered Bi rings (3.20 and $3.28 \AA$) and isolated Bi atoms. Shorter distances of $2.94 \AA$ have been reported for $\mathrm{Bi}_{4}{ }^{2-}$ (Cisar \& Corbett, 1977) in which the $\mathrm{Bi}-\mathrm{Bi}$ bonds display some double-bond character. More recently, a double $\mathrm{Bi}=\mathrm{Bi}$ bond of $2.84 \AA$ has been observed in $(\mathrm{K}-\mathrm{crypt})_{2} \mathrm{Bi}_{2}(\mathrm{Xu}$ et al., 2000).

Experimental

With the aim of obtaining a ternary compound, amounts of K, Ba and Bi (in a 2:3:4 ratio) were inserted in a tantalum reactor weld-sealed under argon. The tantalum reactor was protected in a stainless container welded under argon. Single crystals of $\mathrm{KBa}_{4} \mathrm{Bi}_{3} \mathrm{O}$ were serendipitously obtained by heating at 1025 K for 10 h and then cooling the mixture at the rate of $10 \mathrm{~K} \mathrm{~h}^{-1}$. Probably owing to some diffusion of oxygen through the container, the non-homogeneous
product contained some crystals of $\mathrm{KBa}_{4} \mathrm{Bi}_{3} \mathrm{O}$. Elemental analyses (SEM) confirmed the presence of potassium, barium and bismuth nearly in the ratio 1:4:3. The air-sensitive crystals were inserted into Lindemann glass capillaries for X-ray data investigations. Parameters and crystallographic space group were initially determined by oscillation and Weissenberg techniques. The best diffracting crystal was used for accurate determination of cell parameters.

Crystal data

$\mathrm{KBa}_{4} \mathrm{Bi}_{3} \mathrm{O}$
$M_{r}=1231.40$
Tetragonal, $I 4 / \mathrm{mcm}$
$a=8.960(1) \AA$
$c=16.617(4) \AA$
$V=1334.0(4) \AA^{3}$
$Z=4$
$D_{x}=6.131 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection

Nonius CAD-4 diffractometer	$R_{\text {int }}=0.057$
$\omega-\theta$ scans	$\theta_{\text {max }}=29.95^{\circ}$
Absorption correction: numerical	$h=0 \rightarrow 8$
(SHELX76; Sheldrick, 1976)	$k=0 \rightarrow 12$
$T_{\min }=0.102, T_{\text {max }}=0.436$	$l=0 \rightarrow 22$
830 measured reflections	3 standard reflections
495 independent reflections	every 100 reflections
381 reflections with $I>2 \sigma(I)$	intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.112$
$S=1.064$
495 reflections
18 parameters

Table 1
Selected geometric parameters (\AA).

$\mathrm{Bi} 1-\mathrm{Ba}^{\mathrm{i}}$	$3.7358(9)$	$\mathrm{Bi} 2-\mathrm{K}^{\mathrm{iii}}$	$3.5541(7)$
$\mathrm{Bi} 1-\mathrm{K}$	$4.1543(10)$	$\mathrm{Ba}-\mathrm{O}^{\mathrm{iv}}$	$2.5325(15)$
$\mathrm{Bi} 2-\mathrm{Bi}^{\mathrm{ii}}$	$3.113(3)$	$\mathrm{Ba}-\mathrm{K}^{\mathrm{v}}$	$4.2506(11)$

Symmetry codes: (i) $-x,-y, z$; (ii) $1-x,-y,-z$; (iii) $1+x, y, z$; (iv) $x-1, y, z$; (v) $-x, y, \frac{1}{2}+z$.

The highest residual density peak was $0.7 \AA$ from Bi2 and the deepest hole was $1.5 \AA$ from the O atom.

Data collection and cell refinement: CAD-4 Software (EnrafNonius, 1989); data reduction: local program; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

References

Cisar, A. \& Corbett, J. D. (1977). Inorg. Chem. 16, 2482-2487.
Deller, K. \& Eisenmann, B. (1976). Z. Naturforsch. Teil B, 31, 29-34.
Derrien, G., Tillard, M. \& Monconduit, L. \& Belin, C. (2000). In preparation. Eisenmann, B., Gieck, C. \& Rössler, U. (1999). Z. Anorg. Allg. Chem. 625, 1341-1342.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, the Netherlands.
Sheldrick, G. M. (1976). SHELX76. University of Cambridge, England.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen. Germany.
Xu, L., Bobev, S., El Bahraoui, J. \& Sevov, S. C. (2000). J. Am. Chem. Soc. 122, 1838-1839.

